Risposte ai problemini per Pasqua 2019

So che aspettavate con ansia le risposte: eccole qua!

Somma ridotta
Se Adamo avesse tolto una cifra diversa dall’ultima, la somma dei due numeri sarebbe dovuta essere pari. Non essendolo, sappiamo che è stata tolta l’ultima e quindi la somma è abcde+abcd = 11×abcd+e. Dividendo 52713 per 11 otteniamo 4792 con resto 1; quindi il numero di partenza è 49721 che ha 23 come somma delle cifre.

La strada verso 1000
Scriviamo esplicitamente i primi termini della serie: 1, n, 1+n, 2(1+n), 4(1+n), …; insomma il termine generale è della forma 2k(1+n). Poichè 1000 si fattorizza come 23·125; abbiamo che la successione più lunga avrà 1+n=125 e quindi n=124.

Giornata dello Sport nel Paese delle Meraviglie
Innanzitutto notiamo che sono stati assegnati 35 punti, cioè 5×7 (più eventuali fattori 1 che non contano perché ci sono state almeno due gare); quindi o ci sono state 5 gare con assegnati 7 punti o 7 gare con 5 punti assegnati. Ma poiché il numero minimo di punti assegnabili in una gara è 6 (3-2-1) quest’ultima ipotesi è da escludere. Abbiamo pertanto 5 gare, nelle quali si assegnano 4-2-1 punti. La Lepre Marzolina ha ottenuto 4 punti nella corsa nei sacchi, quindi è arrivata sempre ultima nelle altre gare, compresa la corsa col cucchiaio. (Per la cronaca, Alice è arrivata seconda nella corsa nei sacchi e ha vinto tutte le altre gare; la Falsa Tartaruga è sempre arrivata seconda tranne che nella corsa nei sacchi.)

Alta divisibilità
Per prima cosa, visto che il numero è divisibile per 10 allora b deve essere 0 e quindi esso è della forma a0ca0c000, cioè 1000 × 1001 × a0c. Ma 1001 è 7×11×13 e 1000 è multiplo di 8. Restano quindi da considerare solo i fattori 9, 16 e 17. Per 16, occorre che c sia una cifra pari; per 9, che 2(a+c) sia multiplo di 9 e quindi che lo sia a+c. Ci sono dunque quattro possibilità da testare con la divisione per 17; l’unica valida è 306306000.

Sposta il gettone
Marta può assicurarsi la vittoria spostando di due caselle il gettone A oppure il gettone D. In questo modo la distanza tra A e B risulta la stessa di quella tra C e D; a questo punto a ogni mossa di Maria Marta risponderà ripristinando questa uguaglianza tra le distanze, fino a che non si arriverà ad avere le pedine nelle ultime quattro posizioni e quindi Maria non potrà più fare alcuna mossa.

Maurizio Codogno

Matematto divagatore; beatlesiano e tuttologo at large. Scrivo libri (trovi l'elenco qui) per raccontare le cose che a scuola non vi vogliono dire, perché altrimenti potreste apprezzare la matematica.