Quizzini di Ferragosto 2018

Soliti problemini matematici abbastanza d’annata e direi non troppo complicati: la risposta sarà data tra una settimana.

Successioni e quadrati

In una successione aritmetica, la differenza d tra due elementi successivi è costante. È facile costruire una successione aritmetica di numeri positivi che non contenga alcun quadrato perfetto: prendiamo per esempio 7, 17, 27… Dimostrate che però se essa contiene un quadrato perfetto allora ne avrà infiniti.

a, a+d, a+2d...

Meteorologia

L’ente del turismo di Matelandia vuole compilare una statistica dei giorni di sole o pioggia nella nazione. Chiede i dati di sei regioni, solo che non si è ben spiegato e quindi i dati arrivano come “giorni di sole oppure pioggia”, come vedete nella tabella qui sotto. Recuperati i dati completi con la suddivisione ulteriore tra giorni di sole e di pioggia, ci si accorge che se si esclude una delle regioni allora il numero di giorni di sole è il triplo di quelli di pioggia. Quale regione è da escludere?

tabella

Un triangolo particolare

In un triangolo isoscele ABC l’angolo al vertice A misura 36 gradi. Calcolate il rapporto b/a tra i lati AC e BC.

triangolo isoscele

Tre per sette

Si prendano ventun pedine, alcune bianche e altre nere, e le si dispongano in una scacchiera 3×7, una per casella. Si dimostri che ci sarà sempre un rettangolo (non banale, quindi non 1×k) ai cui vertici ci siano pedine dello stesso colore. Il rettangolo è con i lati paralleli alle caselle, per completezza.

Triangolazione

Dato un poligono convesso di m lati, lo si triangoli: si aggiunga cioè un certo numero di punti interni e lo si suddivida in n triangoli, tali che non ci sia nessuna sovrapposizione tra di essi e due triangoli possano avere un comune o un vertice o un lato (nessun vertice di un triangolo tocca un punto interno a un lato, insomma). Si dimostri che m+n è pari.

triangolazione

Maurizio Codogno

Matematto divagatore; beatlesiano e tuttologo at large. Scrivo libri (trovi l'elenco qui) per raccontare le cose che a scuola non vi vogliono dire, perché altrimenti potreste apprezzare la matematica.